Home
Class 12
MATHS
int 1^(oo) (e^(x+1)+e^(3-x))^(-1) dx =...

`int _1^(oo) (e^(x+1)+e^(3-x))^(-1) dx =`

A

`pi/4e^(2)`

B

`1/e^(2) tan^(-1) (1/e)-pi/2`

C

`1/e^(2) (pi/2tan^(-1) (1/e)`

D

`pi/2e^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

int (e^(x)-1)/(e^(x)+1) dx =

int_0^(oo) x e^(-x) dx=

Let f(x) = (e^(x)+1)/(e^(x)-1) and int_0^(1)( (e^(x)+1)/(e^(x)-1)) x dx = lambda , then int_(-1)^(1) t f(t) dt =

int (dx)/(e^(x)+e^(-x)) dx =

int_0^(oo) x^(3).e^(-x^(2)) dx =

int (e^(2x) - 2e^(x))/(e^(2x)+1) dx =

int (x+1)^(2)e^(x)dx =

int_(-1)^(1) (x+1)e^(x)dx

int x^(2)(e^(x^3))dx =