Home
Class 12
MATHS
int0^(pi//2) log(tan x) dx is :...

`int_0^(pi//2) log(tan x) dx` is :

A

0

B

1

C

`pi/4`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) log sin x dx =

If I = int_0^(pi/4) log (1+ tan x) dx , then I =

Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .

int_0^(pi/2) log|tanx+cotx|dx =

Evaulate int_(0)^(pi//4)log(1+tanx)dx .

int_0^(pi//2) cos x e^(sin x) dx is :

int_0^(pi/8) tan^(2) (2x) dx =

int e^(log(tan x) dx =

The value of underset(0)overset(pi//2)int log tan x dx is

If int_0^pi x f (sin x)dx = A int_0^(pi//2) f (sin x) dx , then A is :