Home
Class 12
MATHS
int0^(1) tan^(-1) x dx =...

`int_0^(1) tan^(-1) x dx =`

A

`pi/4`

B

`pi/4+log2`

C

`pi/4-1/2 log 2`

D

`pi/2 + log 2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1) tan^(-1) x dx =

int_0^(1) tanh x dx =

int_0^1 tan^(-1) (1 - x + x^2) dx equals :

Evaluate: int_(0)^(1) (tan^(-1) x)/(1+x^(2)) dx

The value of int_0^(1) tan^(-1) ((2x-1)/(1+x-x^(2))) dx is

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =

int_0^(1) x^(2).e^(x) dx =

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx