Home
Class 12
MATHS
If int(sin x)^(1) t^2 f(t) dt = 1 - sin ...

If `int_(sin x)^(1) t^2 f(t) dt = 1 - sin x`, then the value of `f(1/(sqrt3))` is :

A

`1/sqrt3`

B

44256

C

`sqrt3`

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

If int_0^x f(t) dt = x + int_x^l tf (t) dt , then the value of f(1) is :

If k int _(0)^(1)x.f(3x)dx = int_(0)^(3) t. f(t)dt , then the value of k is

If int_e^x tf (t) dt = sin x - x cos x - (x^2)/2 for all x in R - [0] , then the value of f(pi/6) is :

If (1 sin t)/(1 + t) dt = alpha , then that value of the integral : int_(4pi - 2)^(4pi) (sin t/2)/(4pi + 2 - t) dt in terms of alpha is given by :

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

If f(x) = |(sin x + sin 2x + sin 3x, sin 2x , sin 3x),(3 + 4 sin x, 3, 4 sin x),(1 + sin x, sin x, 1)| then the value of int_0^(-pi//2) f(x) dx equals :

If f(x) = int_(x^2)^(x^2 + 1) e^(-t^2) dt , find the interval in which f(x) is increasing :