Home
Class 12
MATHS
I(m,n) = int0^1 x^m (ln x)^n dx equals:...

`I_(m,n) = int_0^1 x^m (l_n x)^n dx` equals:

A

n/(m+1) I (m,n-1)

B

`-m/(m+1) I (m,n-1)`

C

`-n/(m+1) I (m,n-1)`

D

m/(n+1) I (m,n-1)

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

If I(m,n) = int_0^1 t^m (1 + t)^n dt , m, n in R , then I(m, n) is :

int_1^(e) x^(n) log x dx

The value of the integral I = int_0^1 x (1 - x)^(n) dx is :

If I_(n) = int_0^(1) x^(n).e^(-x) dx, AA n in N then I_(7)-7I_(6) =

If U_(n) = int_0^(pi/4) tan^(n) x dx then u_(n)+u_(n-2) =

int (1)/(x(log x)^m) dx

If n in N and I_(n) = int (log x)^(n) dx , then I_(n) + n I_(n - 1) =

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =