Home
Class 12
MATHS
int(-1)^(1) tan^(-1) x dx =...

`int_(-1)^(1) tan^(-1) x dx =`

A

0

B

`pi/4`

C

`pi/2`

D

`-pi/4`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

int_0^(1) tan^(-1) x dx =

int_(-1)^(1) xe^(x) dx =

int_(-2)^(1) cot^(-1) (1/x) dx =

int_(-1)^(1) (x + 1) dx .

int_(-1)^(1)|1 - x| dx is :

Evaluate: int_(0)^(1) (tan^(-1) x)/(1+x^(2)) dx

I = int_(-2)^(1) (tan^(-1)x+ cot^(-1)(1/x) dx

int_(-1)^(1) (x+1)e^(x)dx

int_(-1)^(1) |x^(2)-3x+2|dx =

int_(-1)^(1)(x+1) dx.