Home
Class 12
MATHS
If U(n) = int0^(pi/4) tan^(n) x dx then ...

If `U_(n) = int_0^(pi/4) tan^(n) x dx` then `u_(n)+u_(n-2) =`

A

1/(n-1)

B

1/(n+1)

C

1/(2n-1)

D

1/(2n+1)

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

If I_(n) = int_0^(pi/2) sin^(n)x dx then I_(n)/(I_(n-2)) =

int_0^(pi/8) tan^(2) (2x) dx =

If I_(n) = int_0^(pi/4) tan^(n)x dx , then n(I_(n-1)+I_(n+1)) =

I_(n) = int_0^(pi/4) tan^(n) x dx, n in N , then I_(10)+I_(8) =

If I_n = int_0^(pi//4) tan^n x dx , then lim_(n to oo) n [I_n + I_(n -2)] equals :

If n(ne 1) in N and I_(n) = int tan^(n) x dx then I_(n)+I_(n-2) =

int_0^(pi//2) log(tan x)dx =

If I_(n) = int_0^(pi/4) tan^(n) theta d theta , then I_(8)+I_(6) equals

int_0^(pi//2) log(tan x) dx is :