Home
Class 12
MATHS
int0^(pi) (xdx)/(1+sinx) =...

`int_0^(pi) (xdx)/(1+sinx) =`

A

`-pi`

B

`pi/2`

C

`pi`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) (dx)/(1+cotx) =

int_0^(pi) (dx)/(a+b cos x) =

int_0^(pi//2)(dx)/(1 + tanx) =

int_0^(pi/2) (cos x)/(sinx + cosx) dx =

int_0^(pi/2) (sinx-cosx)/(sinx+cosx) dx =

int_0^(pi/4) (cos x- sin x) dx + int_(pi/4)^((5pi)/4) (sinx-cosx) dx + int_(2pi)^(pi/4) (cosx- sinx) dx =

int_0^(pi) (xdx)/(a^(2) cos^(2) x+ b^(2) sin^(2) x) =

If int_0^(pi) x f (sin x) dx = A int_0^(pi//2) f (sin x) dx , then A is :

Prove that I_(1),I_(2),I_(3)"..." form an AP, if I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx .