Home
Class 12
MATHS
lim(n rarr oo) n.sum(r=0)^(n-1) 1/(n^(2)...

`lim_(n rarr oo) n.sum_(r=0)^(n-1) 1/(n^(2)+r^(2)) =`

A

`pi/4`

B

`pi/2`

C

0

D

log2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(sqrt(n^(2)-r^(2))) =

lim_(n rarr oo) sum_(r=1)^(n) r/n^(2) sec^(2) (r^(2)/n^(2)) =

lim_(n rarr oo) sum_(r=1)^(n) 1/n sec^(2) ((rpi)/(4n)) =

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

lim_(n to oo) sum_(r = 1)^(n) 1/n e^(r/n) is :

lim_(n rarr oo) (1)/(n^(3)) sum_(r = 1)^(n) r^(2) is :