Home
Class 12
MATHS
lim(n to oo) [1/(n^2) "sec"^2 1/(n^2) + ...

`lim_(n to oo) [1/(n^2) "sec"^2 1/(n^2) + 2/(n^2) "sec"^(2) 4/(n^2) + …… + 1/n "sec"^(2) 1]` equals :

A

1/2 cosec 1

B

1/2 sec 1

C

1/2 tan 1

D

tan 1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) 1/(n^2) sum_(r = 1)^(n) re^(r//n) equals :

Lt_(n to oo)(1 + 2/n)^(2n) =

lim_(n rarr oo) [1/(n+1)+1/(n+2)+…….+1/(2n)]=

lim_(n to oo) ((n)/(1 + n^2) + n/(2^2 + n^2) + n/(3^2 + n^2) + ……. + n/(n^2 + n^2)) is :

lim_(n rarr oo) sum_(r=1)^(n) r/n^(2) sec^(2) (r^(2)/n^(2)) =

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) [1/(2n+1)+1/(2n+2)+…….+1/(2n+n)]=

lim_(n rarr oo) ((1)/(1-n^(2)) + (2)/(1-n^(2)) +…...+(n)/(1-n^(2))) is :

lim_(n rarr oo) (1)/(n^(3)) sum_(r = 1)^(n) r^(2) is :

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =