Home
Class 12
MATHS
lim(n rarr oo) [1/(2n+1)+1/(2n+2)+…….+1/...

`lim_(n rarr oo) [1/(2n+1)+1/(2n+2)+…….+1/(2n+n)]=`

A

`log_(e)(1/3)`

B

`log_(e)(2/3)`

C

`log_(e)(3/2)`

D

`log_(e)(4/3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|297 Videos
  • DIFFERENTIAL EQUATIONS

    HIMALAYA PUBLICATION|Exercise QUESTION BANK|206 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) [1/(n+1)+1/(n+2)+…….+1/(2n)]=

lim_(n rarr oo) 1/2 [(n+1)(n+2)…….2n]^(1/n) =

lim_(n rarr oo) {1/n+1/(n+1)+1/(n+2)+…..+1/(3n)} =

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(n rarr oo) 5^(((2x)/(x+3)) =

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

lim_(n rarr oo)[(1+1/n)(1+2/n)…..2]^(1/n) =

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =