Home
Class 12
MATHS
Solve for x : tan^-1frac{1-x}{1+x}=1/2ta...

Solve for x : `tan^-1frac{1-x}{1+x}=1/2tan^-1 x,x>0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x : tan^-1frac{x-1}{x-2}+tan^-1frac{x+1}{x+2}=pi/4

Solve for x : 2 tan^-1 x+sec^-1 x=pi/2

Solve for x : tan^-1frac{2x}{1-x^2}=sin^-1frac{2a}{1+a^2}+cos^-1frac{1-b^2}{1+b^2}

Solve for x : 2tan^-1(cos x)=tan^-1(2cosec x)

Solve : tan^-1frac{1}{a-1}=tan^-1frac{1}{x}+tan^-1frac{1}{a^2-x+1}

Solve for x : tan^-1(x-1)+tan^-1 x+tan^-1(x+1)=tan^-1 3x

Solve for x : tan^-1(1+x)+tan^-1(1-x)=pi/4

Solve "tan"^(-1)(1-x)/(1+x) =(1)/(2) "tan"^(-1)x, x gt 0 .

Solve for x, tan^(-1)(x+1) +tan^(-1) (x-1) =tan^(-1) ((8)/(31)) .

Find the value of: tan^-1(frac{x}{y})-tan^-1(frac{x-y}{x+y})