Home
Class 12
MATHS
Prove the following: sin^-1x = cos^-1(sq...

Prove the following: `sin^-1x = cos^-1(sqrt(1-x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: cos^-1x = sin^-1(sqrt(1-x^2))

Prove the following: cos^-1x = tan^-1(frac{sqrt(1-x^2)}{x})

Prove the following: sin^-1x = tan^-1(frac{x}{sqrt(1-x^2)})

Prove the following: tan^-1x = cot^-1(frac{1}{x})

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

Prove the following: tan^-1x = sin^-1(frac{x}{sqrt(1+x^2)})

Prove the following sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

Find the value of cos^(-1)x +cos^(-1) sqrt(1-x^(2)) .

Prove the following sin^4theta-cos^4theta=sin^2theta-cos^2theta=1-2cos^2theta=2sin^2theta-1

Evaluate the integrals: inte^(sin^-1x)/(sqrt(1-x^2))dx