Home
Class 12
MATHS
Prove the following: tan^-1x = sin^-1(fr...

Prove the following: `tan^-1x = sin^-1(frac{x}{sqrt(1+x^2)})`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: sin^-1x = tan^-1(frac{x}{sqrt(1-x^2)})

Prove the following: tan^-1x = cot^-1(frac{1}{x})

Prove the following: cos^-1x = tan^-1(frac{sqrt(1-x^2)}{x})

Prove the following: cos^-1x = sin^-1(sqrt(1-x^2))

Prove the following: tan^-1x+cot^-1y=tan^-1(frac{xy+1}{y-x})

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

Prove the following: sin^-1x = cos^-1(sqrt(1-x^2))

Write the principal value of the following: sin^-1(frac{1}{sqrt2})

Find the values of x for which the following are defined : sin^-1frac{x}{2}+sec^-1 x

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .