Home
Class 12
MATHS
Prove the following: tan^-1x = cot^-1(fr...

Prove the following: `tan^-1x = cot^-1(frac{1}{x})`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: tan^-1x = sin^-1(frac{x}{sqrt(1+x^2)})

Prove the following: tan^-1x+cot^-1y=tan^-1(frac{xy+1}{y-x})

Prove the following: sin^-1x = tan^-1(frac{x}{sqrt(1-x^2)})

Prove the following: cos^-1x = tan^-1(frac{sqrt(1-x^2)}{x})

Find the pricipal value of the following: cot^-1(frac{-1}{sqrt3)})

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

Evaluate the following. sin(cot^(-1)x)

Prove the following (1+tan^2theta) /(1+cot^2theta) =((1+tantheta) /(1+cottheta))^2 =tan^2theta

Find the values of x for which the following are defined : sin^-1frac{x}{2}+sec^-1 x

Solve the following equation for x. tan^(-1)((x+1)/(x-1)) +tan^(-1)((x-1)/(x)) =tan^(-1)(-7)