Home
Class 12
MATHS
Prove the following: tan^-1x+cot^-1y=tan...

Prove the following: `tan^-1x+cot^-1y=tan^-1(frac{xy+1}{y-x})`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: tan^-1x = cot^-1(frac{1}{x})

Prove the following: sin^-1x = tan^-1(frac{x}{sqrt(1-x^2)})

Prove the following: tan^-1x = sin^-1(frac{x}{sqrt(1+x^2)})

Prove the following: cos^-1x = tan^-1(frac{sqrt(1-x^2)}{x})

Prove the following: sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]

Find the value of: tan^-1(frac{x}{y})-tan^-1(frac{x-y}{x+y})

Show that : tan^-1 x+cot^-1(1+x)=tan^-1(1+x+x^2)

Solve for x : tan^-1frac{x-1}{x-2}+tan^-1frac{x+1}{x+2}=pi/4

Solve any of the following equation: tan x+cot x=1

Show that : tan^-1frac{1}{2}+tan^-1frac{1}{3}=pi/4