Home
Class 12
MATHS
Prove the following: sin^-1x-sin^-1y = s...

Prove the following: `sin^-1x-sin^-1y = sin^-1[x(sqrt(1-y^2))-y(sqrt(1-x^2))]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: sin^-1x = tan^-1(frac{x}{sqrt(1-x^2)})

Prove the following: tan^-1x = sin^-1(frac{x}{sqrt(1+x^2)})

Prove the following: sin^-1x = cos^-1(sqrt(1-x^2))

Prove the following: cos^-1x = sin^-1(sqrt(1-x^2))

Prove the following: cos^-1x = tan^-1(frac{sqrt(1-x^2)}{x})

Prove the following: tan^-1x+cot^-1y=tan^-1(frac{xy+1}{y-x})

If sin^-1 x +sin^-1 y + sin ^-1 z=pi , prove that xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2xyz

Solve the following equation for x. sin^(-1)(6x)+sin^(-1) (6sqrt(3)x)= -(pi)/(2) .

Evaluate the integrals: inte^(sin^-1x)/(sqrt(1-x^2))dx