Home
Class 12
MATHS
Prove that d/(dx)[2xtan^-1x-log(1+x^2)]=...

Prove that `d/(dx)[2xtan^-1x-log(1+x^2)]=2tan^-1x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Show that : tan^-1 x+cot^-1(1+x)=tan^-1(1+x+x^2)

Find dy/dx : 2tan^-1(y/x)=log(x^2+y^2)

Prove that log_(a^2) x=(1/2)log_a x

Prove that log_ax+log_(1/(a^2))x=log_asqrtx

Solve for x : tan^-1(x-1)+tan^-1 x+tan^-1(x+1)=tan^-1 3x

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Prove that tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2) .