Home
Class 12
MATHS
Find (dy)/(dx) from the following : logx...

Find `(dy)/(dx)` from the following : `logx = sin^(-1)t, logy = -cos^(-1)t`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) from the following : x = 1/t, y = 4t

Find (dy)/(dx) from the following :- x = 2 e^t, y = 5e^-t

Find (dy)/(dx) from the following : x = 4t + t^2, y = 3t + 2 .

Find (dy)/(dx) of the following function: y = e^(3tan^(-1) x^2) .

Find (dy)/(dx), if y=(sin x)^(logx) .

Find dy/dx : x = a(t-sin t), y = a (1-cos t)

Find dy/dx : x = log t+ sin t, y = e^t +cos t

Find (dy)/(dx) . y=x^(sin^(-1)x

Find dy/dx : xy = sin (x+y)

Evaluate the following. sin ("sin"^(-1)(pi)/(4) +"cos"^(-1)(pi)/(4))