Home
Class 12
MATHS
Find (d^2y)/(dx^2) : x = a(theta - sinth...

Find `(d^2y)/(dx^2)` : `x = a(theta - sintheta), y = a(1 - costheta)` at `theta = (pi)/2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (d^2y)/(dx^2) : x = 2costheta - cos2theta, y = 2sintheta - sin2theta at theta = (pi)/2 .

Eliminate theta x=a sintheta , y=a costheta

Find dy/dx : x = cos theta + sin theta, y = sin theta - theta cos theta

Find dy/dx : x = r cos theta, y = r sin theta

Find (dy)/(dx) from the following :- x = a (theta + sintheta), y = a(theta - costheta) .

Find frac(d^2y)(dx^2) : (ii) x = a cos theta, y = b sin theta

Find (dy)/(dx) from the following : x = asin^2theta, y = costheta

Find dy/dx : x = a sec^2 theta, y = b tan^3 theta

Find the slope of the normal to the curve x = 1 - a sin theta , y = b cos^2 theta at theta = pi/2