Home
Class 12
MATHS
x(dy)/(dx)=y+sqrt(x^(2)-y^(2))...

`x(dy)/(dx)=y+sqrt(x^(2)-y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

x(dy)/(dx)-y=2sqrt(y^(2)-x^(2))

The solution of (dy)/(dx) = (y+sqrt(x^(2) -y^(2)))/x is

(y)/(x)(dy)/(dx)=sqrt(1+x^(2)+y^(2)+x^(2)y^(2))

An equation of the curve satisfying x dy - y dx = sqrt(x^(2)-y^(2))dx and y(1) = 0 is

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

(dy)/(dx)=(y)/(x)+(sqrt(x^(2)+y^(2)))/(x),x>0

If sqrt(y+x)+sqrt(y-x)=c show that (dy)/(dx)=(y)/(x)-sqrt(((y^(2))/(x^(2)))-1)

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))