Home
Class 11
MATHS
lim(x->oo)(sqrt(x^2+1)-sqrt(x^2-1))...

`lim_(x->oo)(sqrt(x^2+1)-sqrt(x^2-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo) (sqrt(x^2+1)-sqrt(x^2-1)) is

lim_(x->oo) (x-sqrt(x^2-1))

lim_(x=oo)(sqrt(x^(2)+1)-3sqrt(x^(2)+1))/(4sqrt(x^(4)+1)-5sqrt(x^(4)-1)) is equal to

lim_(xrarr oo)(sqrt(3x^2-1)+sqrt(2x^2-1))/(4x+3)=

lim_(x rarr oo)sqrt(x+1)-sqrt(x)

Prove that: lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^2-1))) = 1

lim _(xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1))=

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^2+1))