Home
Class 12
MATHS
prove that tan^(-1) (sqrtx)= 1/2 cos^(-...

prove that ` tan^(-1) (sqrtx)= 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that tan^(-1)(sqrt(x))=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove that: quad tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in[0,1]

Prove the following: tan^(-1)sqrt(x)=(1)/(2)cos^(-1)((1-x)/(1+x)),x in(0,1)

Prove that : tan^(-1) ((sqrt(1-x^(2)))/(1+x)) = 1/2 cos^(-1) x

Prove that : sin cot^(-1) tan cos^(-1) x=x

tan^(-1)(sqrt((a-x)/(a+x)))=(1)/(2)cos^(-1)((x)/(a))

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that tan^(-1)(sqrt((1-cos x)/(1+cos x)))=(x)/(2)

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .