Home
Class 11
MATHS
If sin^(-1)x + sin^(-1)y =(2pi)/3, then:...

If `sin^(-1)x + sin^(-1)y =(2pi)/3`, then: `cos^(-1)x +cos^(-1)y=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

What are the values of (x, y) satisfying the simultaneous equation sin^(-1)x + sin^(-1)y=(2pi)/(3)and cos^(-1)x - cos^(-1)y=(pi)/(3) ?

If sin^(-1)x+sin^(-1)y=(pi)/(2), "then" cos^(-1)x+cos^(-1)y is equal to

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^(-1) x + sin^(-1)y = pi//2 and cos^(-1) x - cos^(-1) y = 0 , then value x and y respectively

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) and cos^(-1)x-cos^(-1)y=-(pi)/(3) then the number of values of (x,y) is

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

Solve the following equations/system of equations sin^(-1) x+sin^(-1)y=(2pi)/(3) & cos^(-1)x-cos^(-1)y=pi/3