Home
Class 11
MATHS
If frac{a+3i}{2+ib} = 1-i, show that (5a...

If `frac{a+3i}{2+ib}` = 1-i, show that (5a-7b)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a + 3i) / (2 + ib) = 1 - i, show that 5a - 7b = 0.

If a= frac{-1+sqrt3 i}{2} , b= frac{-1-sqrt3 i}{2} , then show that a^2 =b and b^2 =a

If (frac{1-i}{1+i})^100 = a+ib, then find (a,b)

If frac{5(-8+6i)}{(1+I)^2} = a+ib , then (a,b) equals

If a+ib= frac{1+i}{1-i} , then prove that ( a^2 + b^2 )=1

If [frac{1-i}{1+i}]^96= a+ib , then (a,b) is

If a + ib = (1 + i) / (1 - i) , prove that a^2 + b^2 = 1

If (a+ib) = frac{(x+i)^2}{2x^2+1} , prove that a^2 + b^2 = frac{(x^2+1)^2}{(2x^2+1)^2}

If z= frac{7-i}{3-4i} , then z^14 = …...

If A = [[3,1],[-1,2]] then show that: A^2-5A+7I = 0 .