Home
Class 11
MATHS
If x+iy=sqrt (frac{a+ib}{c+id}), Prove t...

If x+iy=`sqrt (frac{a+ib}{c+id})`, Prove that, `(x^2+y^2)^2`= `frac{a^2+b^2}{c^2+d^2}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x-iy = sqrt (frac{a-ib}{c-id}) , prove that (x^2+y^2) = frac{a^2+b^2}{c^2+d^2}

If x -iy = frac{a-ib}{c-id} , then prove that ( x^2 + y^2 ) = frac{a^2+b^2}{c^2+d^2}

If x+iy= frac{a+ib}{a-ib} , prove that x^2 + y^2 = 1

If x + iy = (a + ib)/(a - ib), prove that x ^(2) + y ^(2) =1.

If x +iy = (a + ib) / (a - ib) , prove that x^2 + y^2 = 1 .

If a+ib= frac{1+i}{1-i} , then prove that ( a^2 + b^2 )=1

If (a+ib) = frac{(x+i)^2}{2x^2+1} , prove that a^2 + b^2 = frac{(x^2+1)^2}{(2x^2+1)^2}

If p+iq = sqrt(frac{a+ib}{c+id}) , then p,q,a,b,c,d in R, then (p^2+q^2)^2 =

In /_\ABC if C = 90^@ then prove that sin(A-B) = frac{a^2-b^2}{a^2+b^2}

If (-7-24i)^frac{1}{2} = x-iy , then x^2+y^2 =