Home
Class 11
MATHS
If (x+iy)^3 = y+vi, then show that y/x+v...

If `(x+iy)^3` = y+vi, then show that y/x+v/y=4(`x^2`-`y^2`)

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+iy)^3 = u+iv, then show that u/x+v/y=4( x^3 - y^3 )

If x+iy= (a+ib)^3 , show that x/a+y/b=4( a^2 - b^2 )

If sqrt (y+x) + sqrt (y-x) = c , then show that dy/dx = frac{y}{x} - sqrt (frac{y^2}{x^2} -1)

if (x + iy)^(1 / 3) = a + ib , show that (x / a) + (y / b) = 4(a^2 - b^2) .

If (x+iy)(3-4i) = 5+12i , then sqrt(x^2+y^2) =

If x^2 + y^2 = t -(1/t) and x^4 + y^4 = t^2 + (1/ t^2) , then show that x^3 y (dy/dx) = 1

If y= x^(x^(x...)) , then show that dy/dx = frac{y^2}{x(1-log y)}

If y= x + tan x , show that cos^2 x (d^2 y)/(dx^2) -2y + 2x =0