Home
Class 11
MATHS
Show that frac{1-2i}{3-4i}+frac{1+2i}{3+...

Show that `frac{1-2i}{3-4i}`+`frac{1+2i}{3+4i}` is a real

Promotional Banner

Similar Questions

Explore conceptually related problems

(frac{1+i}{1-i})^2 =?

The modulus of frac{1-i}{3+i}+frac{4i}{5} is

The value of x, y which satisfy the equation frac{(1+i)x - 2i}{3+i} + frac{(2-3i)y +i}{3-i} = i are

Show that frac{9pi}{8}-frac{9}{4}sin^-1(frac{1}{3}) = frac{9}{4}sin^-1(frac{2sqrt2}{3})

Show that (frac{1}{sqrt 2}+frac{1}{sqrt 2}i )^10 + (frac{1}{sqrt 2}-frac{1}{sqrt 2}i )^10 = 0

Show that (frac{1+i}{sqrt 2})^8 + (frac{1-i}{sqrt 2})^8 = 2

Show that (1- 2i )/( 3 - 4i ) + (1 + 2i )/( 3 + 4i ) is real.

Show that cot^-1(frac{1}{3})-tan^-1(frac{1}{3}) = cot^-1(frac{3}{4})

Show that tan^-1(frac{1}{2})-tan^-1(frac{1}{4}) = tan^-1(frac{2}{9})

Reduce( frac{1}{1-4i} - frac{2}{1+i} frac{3-4i}{5+i} ) to the standard form