Home
Class 11
MATHS
Let z1=2-i, z2 = -2 +i, find Re[frac{z1 ...

Let `z_1`=2-i, `z_2` = -2 +i, find Re[`frac{z_1 z_2}{z_1}`]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_1 =2-i, z_2 = -2 +i, find Im[ frac{1}{z_1 z_2} ]

z_1 =2-i, z_2 =1+i, find abs(frac{z_1+z_2+1}{z_1-z_2+1})

If z_1 = 1-i and z_2 = 2+4i , then im[frac{z_1z_2}{z_1} =

If z_1=1-2i , z_2=1+i and z_3=3+4i , then [frac{1}{z_1}+frac{3}{z_2}][frac{z_3}{z_2}=

If z_1 = (4,5) and z_2 = (-3,2) , then frac{z_1}{z_2} equals

Let z_1 =3+4i and z_2 = -1+2i . Then abs(z_1+z_2)^2-2(abs(z_1)^2+abs(z_2)^2) is equal to

If abs(z_1) =1, ( z_1 != -1) and z_2 = frac{z_1 - 1}{z_1 +1} , then show that the real part of z_2 is zero.

If z^2 = -24-18i , then z=

z_1 = 1+i, z_2 =2-3i, verify the following: bar (z_1. z_2) = bar (z_1) . bar (z_2)