Home
Class 11
MATHS
If (frac{1+i}{1-i}^3) - (frac{1-i}{1+i}^...

If `(frac{1+i}{1-i}^3)` - `(frac{1-i}{1+i}^3)` = x+iy, then find (x,y)

Promotional Banner

Similar Questions

Explore conceptually related problems

(frac{1+i}{1-i})^2 =?

If (frac{1-i}{1+i})^100 = a+ib, then find (a,b)

If frac{(1+i)^3}{(1-i)^3}-frac{(1-i)^3}{(1+i)^3} = x+iy , then

If (frac{1+i}{1-i})^x = 1, then

If ((1 + i) / (1 - i))^3 - ((1-i) / (1 + i))^3 = x + iy then find x and y.

If [frac{1-i}{1+i}]^96= a+ib , then (a,b) is

( i^57 + frac{1}{i^25} ) =

If (-7-24i)^frac{1}{2} = x-iy , then x^2+y^2 =

i^65+frac{1}{i^145} =

[frac{1+i}{sqrt2}]^8+[frac{1-i}{sqrt2}]^8