Home
Class 11
MATHS
If abs(z1)=1, (z1 != -1) and z2 = frac...

If `abs(z_1)`=1, (`z_1 !=` -1) and `z_2` = `frac{z_1 - 1}{z_1 +1}`, then show that the real part of `z_2` is zero.

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 = 1-i and z_2 = 2+4i , then im[frac{z_1z_2}{z_1} =

If z_1 = (4,5) and z_2 = (-3,2) , then frac{z_1}{z_2} equals

Let z_1 =2-i, z_2 = -2 +i, find Re[ frac{z_1 z_2}{z_1} ]

If abs(z+1) = z+2 (1+i), then find z

If (1+i)z=(1-i) (bar z) , then show that z=-i bar z

If abs(z)= 1 and omega = frac{z-1}{z+1} (where z != -1 ), the Re(omega) is

If abs(z_1) = abs(z_2) , is it necessary that z_1 = z_2 ?

z_1 =2-i, z_2 =1+i, find abs(frac{z_1+z_2+1}{z_1-z_2+1})

Let z_1 =2-i, z_2 = -2 +i, find Im[ frac{1}{z_1 z_2} ]

If z=1+i then the multiplicative Inverse of z^2 is