Home
Class 11
MATHS
frac{(a^2+1)^2}{2a-i} = x+iy, what is th...

`frac{(a^2+1)^2}{2a-i}` = x+iy, what is the value of (`x^2`+`y^2`)?

Promotional Banner

Similar Questions

Explore conceptually related problems

If frac{(1+i)^2}{2-i} = x+iy, then find the value of x and y

If x= frac{5+i}{1-i} , the value of x^3-x^2+x+44 is

If tan^-1(frac{x-1}{x-2})+tan^-1(frac{x+1}{x+2}) = frac{pi}{4} then find value of x

If f(x) = frac {x^2 -1}{x^2 +1} , for every real x, then the minimum value of f(x) is.

If (-7-24i)^frac{1}{2} = x-iy , then x^2+y^2 =

What is the conjugate of frac{2-i}{(1-2i)^2} ?

If sin^-1(1-x)-2sin^-1x = frac{pi}{2} then find the value of x

if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

If x -iy = frac{a-ib}{c-id} , then prove that ( x^2 + y^2 ) = frac{a^2+b^2}{c^2+d^2}

If (x+iy)^3 = y+vi, then show that y/x+v/y=4( x^2 - y^2 )