Home
Class 11
MATHS
If a+ib=c+id, then...

If a+ib=c+id, then

A

`a^2`+`c^2` = 0

B

`b^2`+`c^2` = 0

C

`b^2`+`d^2` = 0

D

`a^2`+`b^2` = `c^2`+`d^2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x -iy = frac{a-ib}{c-id} , then prove that ( x^2 + y^2 ) = frac{a^2+b^2}{c^2+d^2}

If p+iq = sqrt(frac{a+ib}{c+id}) , then p,q,a,b,c,d in R, then (p^2+q^2)^2 =

If sqrt(a+ib) = x+iy , then possible value of sqrt((a-ib) is (a,b,x,y in R)

If (1+isqrt3)^9 = a+ib , then value of b is equal to

If [frac{1-i}{1+i}]^96= a+ib , then (a,b) is

If (sqrt8+i)^50 = 3^49(a+ib) , then a^2+b^2 is

If frac{5(-8+6i)}{(1+I)^2} = a+ib , then (a,b) equals

If (a+ib)(c+id)(e+if)(g+ih) = A+ iB, then show that ( a^2 + b^2 ) ( c^2 + d^2 )( e^2 + f^2 )( g^2 + h^2 )= ( A^2 + B^2 )

If (a+ib)(c+id)(e+if)(g+ih) = A+iB , then (a^2+b^2)(c^2+d^2)(e^2+f^2)(g^2+h^2) =