Home
Class 11
MATHS
If z =((sqrt 3)/2 + i/2)^5 + ((sqrt 3)/2...

If z =`((sqrt 3)/2 + i/2)^5` + `((sqrt 3)/2 - i/2)^5`, then

A

Re (z) = 0

B

Im(z)=0

C

Re (z) < 0, Im (z) = 0

D

Re (z) > 0, Im (z) = 0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: ((sqrt 3)/2 + i/2)^3

Show that (sqrt(3)/2 + i/2)^3 = i

Expand: (i) (sqrt 3 + sqrt 2)^4 (ii) (sqrt 5 - sqrt 2)^5

Solve the following: If a = (-1 + sqrt(3)i) / 2 , b = (-1 - sqrt(3)i) / 2 , show that a^2 = b and b ^2 = a

Find the value of: (i) (sqrt 3 + 1)^4 - (sqrt 3 - 1)^4 (ii) (2 + sqrt 5)^5 + (2 - sqrt 5)^5

Show that ((1)/( sqrt2) + (i)/( sqrt2 )) ^( 10) + ((1)/( sqrt2 ) - (i)/( sqrt2 )) ^( 10 ) = 0

Show that (1 / sqrt(2) + i / sqrt(2))^10 + (1 / sqrt(2) - i / sqrt(2))^10 = 0 .

If z = frac{sqrt 3 + i}{2} , then z^69 =

If z = (3sqrt7 +4i)^2(3sqrt7-4i)^3 then Re(z) =

If a= frac{-1+sqrt3 i}{2} , b= frac{-1-sqrt3 i}{2} , then show that a^2 =b and b^2 =a