Home
Class 11
MATHS
(1+i)^8 + (1-i)^8 =...

`(1+i)^8` + `(1-i)^8` =

A

`2^8`

B

`2^5`

C

`2^4` cos (`pi`)/4

D

`2^8` cos (`pi`)/8

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If ((1 + i) / (1 - i))^3 - ((1-i) / (1 + i))^3 = x + iy then find x and y.

If a + ib = (1 + i) / (1 - i) , prove that a^2 + b^2 = 1

If n is an odd integer, i= sqrt -1 then [ (1 + i)^(6n) + (1 - i)^(6n) ] is equal to

Simplify: (1 / i) + (1 / i^2) + (1 / i^3) + (1 / i^4)

If frac{(1+i)^3}{(1-i)^3}-frac{(1-i)^3}{(1+i)^3} = x+iy , then

Find the modulus of the following: ((2 + 4i)(-1 + 2i)) / ((-1 -i)(3 - i))

The value of (1+i)^6+(1-i)^6 is

Show that ((1 + i ) /( sqrt2 )) ^( 8) + ((1 - i )/( sqrt2 )) ^( 8) = 2.

Find the value of (i^6 + i^7 + i^8 + i^9) / (i^2 + i^3)