Home
Class 11
MATHS
If (1-i)^n = 2^n, then n is equal to...

If `(1-i)^n` = `2^n`, then n is equal to

A

1

B

2

C

0

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n)C_15 = ^(n)C_4 then n is equal to

If n (A)=8 and n (A nnB)=2, then n[(AnnB)' nn A] is equal to

If ("^(n+2)C_8) : ("^(n-2)P_4) = frac{57}{16} , then n is equal to

If n is an odd integer, i= sqrt -1 then [ (1 + i)^(6n) + (1 - i)^(6n) ] is equal to

If theta =(pi)/(2 ^(n) +1), then cos theta cos 2 theta cos 2^(2) theta …cos 2 ^(n-1)theta is equal to ................... A) (1)/(2 ^(n)) B) cos theta C) 2 D) 2^(n)

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b) n(n+1)y n y (d) n^2y

If (1+i)(1+2i)(1+3i)…...(1+ni) = a+ib , then 2.5.10…....(1+n^2) is equal to

If a_n = 2^(2^n) + 1 , then for n>1 last digit of an is

If (n+2)! = 210(n-1)! , then the value of n is