Home
Class 10
MATHS
sqrt (cosec^(2) theta - cot^(2) theta )=...

`sqrt (cosec^(2) theta - cot^(2) theta )`=

A

`cosec theta-cot theta`

B

`cosec theta+cot theta`

C

`1`

D

`0`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • TANGENTS AND SECANTS TO A CIRCLE

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|201 Videos
  • TRIGONOMETRY (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise TRIGONOMETRY (MULTIPLE CHOICE QUESTION)|25 Videos

Similar Questions

Explore conceptually related problems

If tan theta =(1)/(sqrt(7)) and theta is an acute angle , then ("cosec"^(2) theta - sec^(2) theta )/( "cosec"^(2) theta + sec^(2) theta =

If cot theta = sqrt(7) and theta does not lie the first quadrant , then ( " cosec"^(2) theta - sec^(2) theta )/( "cosec"^(2) theta + sec^(2) theta )=

The number of solutions of sec^(2) theta + cosec^(2) theta + 2 cosec^(2) theta = 8, 0 le theta le pi//2 is

"cosec"^(2) theta * cot^(2) theta -sec^(2) theta * tan^(2) theta - (cot^(2) theta - tan^(2) theta ) (sec^(2) theta * "cosec"^(2) theta -1)=

sqrt (sec^2 theta + cosec^2 theta) =……...

sec^2 theta + cosec^2 theta =…………

sin^(4) theta + 2 sin^(2) theta (1-(1)/("cosec"^(2) theta ) )+ cos^(4) theta =

Evaluate the following (sec^(2) theta -1 ) (cosec ^(2) theta -1)

Evaluate the following : (sec^(2) theta - 1)(cosec^(2) theta - 1)

( tan^(3) theta )/( 1+ tan^(2) theta )+ ( cot^(3) theta )/( 1+ cot^(2) theta )=