Home
Class 10
MATHS
sec^(2) 33^(0) - cot^(2) 57^(0)=...

`sec^(2) 33^(0) - cot^(2) 57^(0)`=

A

0

B

1

C

`-1`

D

`1/2`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • TANGENTS AND SECANTS TO A CIRCLE

    VGS PUBLICATION-BRILLIANT|Exercise EXERCISE|201 Videos
  • TRIGONOMETRY (MULTIPLE CHOICE QUESTION)

    VGS PUBLICATION-BRILLIANT|Exercise TRIGONOMETRY (MULTIPLE CHOICE QUESTION)|25 Videos

Similar Questions

Explore conceptually related problems

( cos^(2) 33^(@) - cos^(2) 57^@)/( sin 21^(@) - cos 21^(@))=

cosec^(2)Acot^(2)A-sec^(2)Atan^(2)A-(cot^(2)A-tan^(2))(sec^(2)Acosec^(2)A-1) =

Are these identities true only for 0^(@) le A le 90 ^(@) ? If not ,for which other values of A they are true ? sec^(2) A-tan ^(2) A =1 " " cosec ^(2) A - cot ^(2) A=1

sec h^(2) [tan h^(-1) ((1)/(2))] + "cosec h"^(2) (cot h^(-1) (3)) =

If ABCD is a quadrilateral then Sec^(2) ((A+B)/(4))- Cot^(2) ((C+D)/(4))=

cot16^(0)cot44^(0)+cot44^(0)cot76^(0)-cot76^(0)cot16^(0)

sec^(2)(Tan^(-1)2)+cosec^(2)(Cot^(-1)3)=

"cosec"^(2) theta * cot^(2) theta -sec^(2) theta * tan^(2) theta - (cot^(2) theta - tan^(2) theta ) (sec^(2) theta * "cosec"^(2) theta -1)=