Home
Class 11
MATHS
The value of (1+i)^4+(1-i)^4 is 8 (b) 4 ...

The value of `(1+i)^4+(1-i)^4` is 8 (b) 4 (c) -8 (d) -4

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 4^(-1)-8^(-1)

The value of (1+i)^(4)(1+(1)/(i))^(4) is

If (2p+1/p)=4 , the value of (p^3+1/(8p^3)) is (a) 4 (b) 5 (c) 8 (d) 15

If [(2a+b,a-2b),(5c-d,4c+3d)]=[(4,-3),(11,24)] then the value of a+b-c+2d is (a) 8 (b) 10 (c) 4 (d) -8

If (x-(1)/(x))=2, then the value of (x^(4)+(1)/(x^(4))) is (a) 4(b)8(c)12 (d) 34

If the line x-1=0 is the directrix of the parabola y^(2)-kx+8=0 ,then one of the values of k is (1)/(8)( b) 8 (c) 4 (d) (1)/(4)

If |(x , 1),(1,x)| = |(2 , 0),(8,4)| then value of x is: (a) pm 3 (b) pm2 (c) pm4 (d) 0

Find the value of ( -1/2 )^5 / ( -1/2 )^4 ÷ ( ( -1/8 ) )/( (-1/4 ) ) is ( A ) 2 ( B ) 0 ( C ) 1 ( D ) -1