Home
Class 12
MATHS
If f(x)=x^(3)+bx^(2)+cx+dand 0 ltb^(2)lt...

If `f(x)=x^(3)+bx^(2)+cx+dand 0 ltb^(2)ltc,` then in `(-oo,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^3+bx^3+cx+d and 0 lt b^2 lt c "then in" (-oo,oo)

If (x)=x^(3)+bx^(2)+cx+d and 0

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt, then f(x) increases in (0,2)(b) no value of x(0,oo)(d)(-oo,0)

If f (x) =sin x+cos x, x in (-oo, oo) and g (x) = x^(2), x in (-oo,oo) then (fog)(x) is equal to

Consider the function f : (-oo , oo) to (-oo , oo) defined by f(x) = (x^(2) - ax + 1)/(x^(2) + ax + 1) , 0 lt a lt 2 Let g (x) = underset(0) overset(e^(x))(int) (f'(t))/(1 + t^(2)) dt Which of the following is true ?

The value of b for which the function f(x)=sin x-bx+c is decreasing in the interval (-oo,oo) is given by

If f : [0, oo) rarr [2, oo) be defined by f(x) = x^(2) + 2, AA xx in R . Then find f^(-1) .