Home
Class 12
MATHS
The value of int(e^(6log x)-e^(5log x))/...

The value of `int(e^(6log x)-e^(5log x))/(e^(4log x)-e^(3log x))dx` is equal

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(6log x)-e^(5log x))/(e^(5log x)-e^(3log x))dx

int(e^(6log x) -e^(5log x ))/(e^(4log x) -e^(3log x)) dx= ax^(3) +bx^(2) +c

The value of int e^(5log x)dx is

int(e^(x log a)+e^(a log x))dx

int(e^(x log a)+e^(a log x))dx

e^(x log a)+e^(a log x)+e^(a log a)

e^(x log a)+e^(a log x)+e^(a log a)

e^(x log a)+e^(a log x)+e^(a log a)

int e^(-log x)dx=

int(e^(6log_(e)x)-e^(5log_(e)x))/(e^(4log_(e)xe^(3log_(e)x))) backslash dx