Home
Class 12
MATHS
Let A=[[sqrt3, 1, 0],[ 1 , -sqrt3, 0...

Let `A=[[sqrt3, 1, 0],[ 1 , -sqrt3, 0],[ 0, 0, 2]]` and ` d= det(2 A^T div A A^T+adj A)`then `sqrt(d)` is

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Similar Questions

Explore conceptually related problems

If P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/ 2]], A = [[1,1],[0,1]]and Q= PAP^(T) , the ltbr. P^(T)(Q^(2005)) P equal to

Let A= [{:(( sqrt(3))/(2),(1)/(2) ),( -(1)/(2) ,(sqrt( 3))/( 2)) :}],B= [{:( 1,1),(0,1):}]and C = ABA^(T) , "then "A^(T) C^(3)A is equal to

If A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,1)], C=ABA^T,X=A^TC^2A then det (x) is equal to

If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

A circle C of radius 1 is inscribed in an equilateral triangle PQR . The points of contact of C with the sides PQ, QR, RP and D, E, F respectively. The line PQ is given by the equation sqrt(3) +y-6=0 and the point D is ((sqrt(3))/(2), 3/2) . Equation of the sides QR, RP are : (A) y=2/sqrt(3) x + 1, y = 2/sqrt(3) x -1 (B) y= 1/sqrt(3) x, y=0 (C) y= sqrt(3)/2 x + 1, y = sqrt(3)/2 x-1 (D) y=sqrt(3)x, y=0