Home
Class 12
MATHS
If A=[[cos alpha, -sin alpha],[ sin al...

If `A=[[cos alpha, -sin alpha],[ sin alpha, cos alpha]]`, then the number of values of `alpha`in `(0, pi)` satisfying `A+A^T=I_,` is [Note: `I` is an identity matrix of order 2 and `P^T` denotes transpose of matrix `P .]`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[cosalpha, -sin alpha] , [sin alpha, cos alpha]] then A+A'=I then alpha=

A=[[Cos alpha,sin alpha],[-Sin alpha,cos alpha]] then A^(2)

If A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] then verify that A'A=I

If A=[[cos alpha,-sin alphasin alpha,cos alpha]] then AA'=I, if the value of alpha is

If A=[[cos alpha,-sin alphasin alpha,cos alpha]] is identity matrix, then write the value of alpha

If A=[[cos alpha,-sin alphasin alpha,cos alpha]], then for what value of alpha is A an identity matrix?

If A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] then show that A A^(T)=A^(T)A=I

If A = [ (cos alpha ,- sin alpha ),(sin alpha ,cos alpha)] , then A + A' = I then the value of alpha is :