Home
Class 12
MATHS
If the product of n matrices [[1,n][0...

If the product of n matrices `[[1,n][0, 1] [[1, 2],[ 0 , 1]] [[1 , 3],[ 0, 1]][[1, n],[ 0 , 1]]` is equal to the matrix `[[1, 378], [0 , 1]]` then the value of n is equal to

Text Solution

Verified by Experts

The correct Answer is:
27
Promotional Banner

Similar Questions

Explore conceptually related problems

If the product of n matrices [[1,10,1]][[1,20,1]][[1,30,1]]......[[1,n0,1]] is equal to the matrix ,[[1,3780,1]] then the value of n is equal to

if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

Let matrix A=[[1,0,0],[1,0,1],[0,1,0]] then the value of |A^(2012)-I| is equal to

If A=[[1,0],[1,1]] then A^(n) is equal to

If A=[[1,0],[1,1]] then A^(-n) is equal to -

If A=|[1,a],[0,1]| , then A^(n) is equal to

If A=[[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all n epsilon N

If A=[(1,0,0),(0,1,0),(3,4,-1)] and A^(n)=l , then value of n is equal to

If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdotcdot[{:(1, n-1), (0,1):}] = [{:(1, 78), (0,1):}] , then the inverse of [{:(1, n), (0,1):}] is