Home
Class 11
MATHS
If the points ((a^3)/(a-1),(a^2-3)/(a-1)...

If the points `((a^3)/(a-1),(a^2-3)/(a-1)),((b^3)/(b-1),(b^3-3)/(b-1))a n d((c^3)/(c-1),(c^3-3)/(c-1))` where `a , b ,c` are different from 1 lie on the line `l x+m y+n=0` `a+b+c=-m/l` `a b+b c+c a+n/l=0` `a b c=((3m+n))/l` `a b c-(b c+c a+a b)+3(a+b+c)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points ((a^(3))/(a-1),(a^(2)-3)/(a-1)),((b^(3))/(b-1),(b^(3)-3)/(b-1)) and ((c^(3))/(c-1),(c^(3)-3)/(c-1)) where a,b,c are different from 1 lie on the line lx+my+n=0a+b+c=(m)/(l)ab+bc+ca+(n)/(l)=0abc=((3m+n))/(l)abc-(bc+ca+ab)+3(a+b+c)=0

If the points ((a^3)/((a-1))),(((a^2-3))/((a-1))),((b^3)/(b-1)),((b^2-3)/((b-1))),((c^3)/(c-1)) and (((c^2-3))/((c-1))), where a , b , c are different from 1, lie on the l x+m y+n=0 , then (a) a+b+c=-m/l (b)a b+b c+c a=n/l (c)a b c=((m+n))/l (d)a b c-(b c+c a+a b)+3(a+b+c)=0

If the points ((a^(3))/(a-1),(a^(2)-3)/(a-1))((b^(3))/(b-1),(b^(2)-3)/(b-1)),((c^(3))/(c-1),(c^(2)-3)/(c-1)) are a!=1,b!=1,c!=1, then find the value of abc-(ab+bc+ca)+3(a+b+c)

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0

If a+b=2c, then the value of (a)/(a-c)+(b)/(b-c) is (1)/(2)(b)1(c)2(d)3

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

What is the value of the expression? ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/(3(a-b)(b-c)(c-a))=? (a)4 (b)1 (c)2 (d)0

((b^3c^(-2))/(b^(-4)c^3))^(-3)-:((b^(-1)c)/(b^2c^(-2)))^5=b^x c^y prove that x+y+6=0