Home
Class 12
MATHS
Consider a function f(x)="sin"^(-1) (2x)...

Consider a function `f(x)="sin"^(-1) (2x)/(1+x)+"cos"^(-1) (1-x^(2))/(1+x^(2))+"tan"^(-1) (2x)/(1-x^(2))-atan^(-1)x(aepsilonR)`, the value of if `f(x)=0` for all `x`:

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) , then

sin [ tan^(-1). (1 - x^(2))/(2x) + cos^(-1) . (1-x^(2))/(1 + x^(2))] is

Integrate the function f(x)=(sin x)/(1+cos^2x)

The domain of the function f(x) = sin^(-1) ((2-|x|)/(4)) + cos^(-1) ((2-|x|)/(4)) + tan^(-1) ((2-|x|)/(4)) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

Let f(x) = 2 tan^(-1)x + "sin"^(-1) (2x)/(1 + x^(2)) then

sin{tan^(-1)[(1-x^(2))/(2x)]+cos^(-1)[(1-x^(2))/(1+x^(2))]}=

The domain of the function f(x) = sin^(-1)((3x^(2) + x-1)/((x-1)^(2))) + cos^(-1)((x-1)/(x+1)) is :

range of the function f(x)=cos^(-1)x+2sin^(-1)x+3tan^(-1)x