Home
Class 11
MATHS
Let a, b and c are the roots of the equa...

Let a, b and c are the roots of the equation `x^(3)-7x^(2)+9x-13=0` and A and B are two matrices given by `A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))]`, then the value `|A||B|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

det[[bc-a^(2),ca-b^(2),ab-c^(2)ca-b^(2),ab-c^(2),bc-a^(2)ab-c^(2),bc-a^(2),ca-b^(2)]]=det[[a,b,cb,c,ac,a,b]]^(2)

|[b^(2)c^(2),bc,a-c],[c^(2)a^(2),ca,b-c],[a^(2)b^(2),ab,0]|=?

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

det[[a,a^(2),bcb,b^(2),cac,c^(2),ab]]=(a-b)(b-c)(c-a)(ab+bc+ca)

The roots of the equation a(b-2x)x^(2)+b(c-2a)x+c(a-2b)=0 are, when ab+bc+ca=0

The roots of the equation a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0 are,when ab+bc+ca=0

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)

If a+b+c=9anda^(2)+b^(2)+c^(2)=21 , then ab+bc+ca is equal to