Home
Class 11
MATHS
int((x-1)(x-2)(x-3))/((x-4)(x-5)(x-6))dx...

`int((x-1)(x-2)(x-3))/((x-4)(x-5)(x-6))dx`
`=x+k log|x-4-24log|x-5|+30log|x-6|+c` where `k` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int((x-1)(x-2)(x-3))/((x-4)(x-5)(x-6))dx=ax+b log|x-4|+e log|x-5|+e log|x-6|+e then value of a+b+c+d

int(x^(2)(1-ln x))/(ln^(4)x-x^(4))dx equals

int(ln(6x^(2)))/(x)dx

int (x^(2)(1-"ln"x))/(("ln"^(4)x-x^(4))dx is equal to

If int(2x+3)/(x^(2)-5x+6)dx =9log(x-3)-7log(x-2)+A, then A =

f(x)=ln((x^(2)-5x+6)/(x^(2)+4x+6))

If log_(x)(4x^(log_(5)(x))+5)=2log_(5)x, then x equals to

The value of int x log x (log x - 1) dx is equal to

If log_(4)x+log_(2)x=6, then x is equal to a.2 b.4 c.8 d.16

int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=