Home
Class 12
MATHS
If ratio of the roots of the equation ...

If ratio of the roots of the equation `ax^(2)+bx+c=0` is `m:n`
then (A) `(m)/(n)+(n)/(m)=(b^(2))/(ac) (B) sqrt((m)/(n))+sqrt((n)/(m))=(b)/(sqrt(ac))],[" (C) sqrt((m)/(n))+sqrt((n)/(m))=(b^(2))/(ac)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation ax^(2)+bx+c=0 are in the ratio m:n then

If the ratio of the roots of the equation ax^2+ bx+c=0 is m:n then (i) m/n+n/m=b^2/(ac) (ii) sqrt(m/n)+sqrt(n/m)=sqrt(b^2/(ac)) (iii) sqrt(m/n)+sqrt(n/m)=(b^2/(ac)) (iv) m/n+n/m=a^2/b^2

if the ratio of the roots of the quadratic equation px^(2)+qx+q=0 be m:n, then show that sqrt((m)/(n))+sqrt((n)/(m))+sqrt((q)/(p))=0

If the roots of the equation ax^2+bx+c=0 be in the ratio m:n, prove that sqrt(m/n)+sqrt(n/m)+b/sqrt(ac)=0

(ax)^(m)+(b)^(n)

If m and n are the roots of the equation ax ^(2) + bx + c = 0, then the equation whose roots are ( m ^(2) + 1 ) // m and ( n ^(2)+1) //n is

The point of intersection of tangents drawn to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the points where it is intersected by the line lx+my+n=0, is (A) ((-a^(2)l)/(n),(b^(2)m)/(n))(B)((-a^(2)l)/(m),(b^(2)n)/(m))(C)((a^(2)l)/(m),(-b^(2)n)/(m))(D)((a^(2)l)/(m),(b^(2)n)/(m))

Find the values of m and n if: 4^(2m)=(3sqrt(16))^(-(6)/(n))=(sqrt(8))^(2)