Home
Class 12
MATHS
If (1)/(x(x+1) (x+2)...(x+n)) = (A(0))/(...

If `(1)/(x(x+1) (x+2)...(x+n)) = (A_(0))/(x) + (A_(1))/(x+1) + (A_(2))/(x+ 2)+ ...+ (A_(n))/(x+n)` then `A_(r)`=
A .`(r!(-1)^(r))/((n-r)!)`
B. `((-1)^(r))/(r!(n-r)!)`
C. `(1)/(r!(n-r)!)`
D. None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1-x)^(-n)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(r)x^(r)+..., then a_(0)+a_(1)+a_(2)+...+a_(r) is equal to (n(n+1)(n+2)...(n+r))/(r!)((n+1)(n+2)...(n+r))/(r!)(n(n+1)(n+2)...(n+r-1))/(r!) none of these

If (1+x)^(n) = a_(0) + a_(1)x + a_(2)x^(2) + ....+a_(n)x^(n) , then (1+(a_(1))/(a_(0)))(1+(a_(2))/(a_(1)))(1+(a_(3))/(a_(2)))...(1+(a_(n))/(a_(n-1)))=

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( 1+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

Let f(x)=a_(0)+a_(1)x+a_(2)x^(2)++a_(n)x^(n)+ and (f(x))/(1-x)=b_(0)+b_(1)x+b_(2)x^(2)++b_(n)x^(n)+ then b_(n)+b_(n-1)=a_(n) b.b_(n)-b_(n-1)=a_(n)cb_(n)/b_(n-1)=a_(n) d.none of these

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If (1+2x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a=(^(n)C_(2))^(2) b.^(n)C_(r).^(n)C_(r+1) c.^(2n)C_(r) d.^(2n)C_(r+1)